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Abstract—Radio map is a promising technology to en-
able environment-aware wireless communications, which may
strengthen the flight safety and enhance communication perfor-
mance for cellular-connected unmanned aerial vehicles (UAVs).
However, conventional interpolation-based radio map construction
method relies on the large amount of measurement data and it
usually gives poor performance if only limited data along a single
UAV flight is available. In this paper, we propose an effective
map construction method called Simultaneous Radio and Physical
Mapping (SRaPM), which concurrently constructs three closely
related radio and physical maps by fusing both radio and sensing
data collected by the UAV, namely the link state map (LSM),
channel gain map (CGM), and building height map (BHM).
Specifically, the received signal strength (RSS) is measured while
the UAV receives communication signal from the ground base
station (GBS), based on which a hypothesis test problem is solved
to determine whether the line of sight (LoS) link is blocked. At the
same time, the sensors equipped on the UAV sense the locations
of the reflection points, based on which some knowledge about
the location and height of the buildings in different directions are
deduced. Then, the obtained radio and sensing results are used to
update the LSM, CGM and BHM. Numerical results are provided
to show the effectiveness of the proposed map construction method
as compared with the benchmarking spatial interpolation method.

I. INTRODUCTION

Due to the high mobility, swift deployment and low cost,

unmanned aerial vehicles (UAVs) have been widely used in

military and civilian fields, such as reconnaissance, trans-

portation, infrastructure inspection, precision agriculture, and

disaster relief [1]. To ensure flight safety and support various

mission-critical tasks, UAVs are usually equipped with both

communication and sensing devices. For instance, a cellular-

connected UAV may receive the control information from a

remote controller and upload its payload data to the core

network via the ubiquitous cellular networks [2]. On the other

hand, a multitude of UAV-equipped sensors like camera, radar

or lidar, enable the UAV to sense the environment and support

various safety functions like collision avoidance.

With the ever-increasing aerial users in future wireless net-

works, one effective method to strengthen flight safety and

enhance the communication performance is via constructing

channel knowledge map or radio map [3]–[6]. Most existing

radio map construction approaches can be classified into two

groups, i.e., data-driven approach and physical map based
approach. With data-driven approach, extensive radio measure-

ments are collected and interpolation-based methods, such as

inverse-distance weighted K nearest neighbor (IDW-KNN) [7]

and Kriging algorithms [8], are applied to obtain the radio

information for locations without measurements. However,

such interpolation-based methods ignore the well-established

channel models and expert knowledge, and require prohibitive

data measurements in complex environments. Therefore, to

utilize both measurement data and expert knowledge, some

segmented regression approaches of channel models based on

Expectation-Maximization (EM) algorithm have been studied

for radio map construction [9], [10].
On the other hand, if three dimensional (3D) physical map

of the environment is available, the line of sight (LoS)/non-line

of sight (NLoS) status along the UAV flying trajectory can be

determined, by checking whether there is any building blocking

the line segment connecting the ground base station (GBS) and

UAV location. Based on such a priori information, statistical

channel model can be used to estimate the channel gain [11].

For example, the authors in [4], [12] proposed the concept of

virtual segmented obstacle maps for radio map construction.

By utilizing the 3D physical obstacle map and applying the

segmented regression approaches of channel models based

on EM algorithm, the virtual segmented obstacle maps can

be obtained. Moreover, with accurate 3D physical map, the

boundaries of LoS/NLoS regions can be determined to use the

total variation norm minimization (TVNM)-based interpolation,

thus speeding up ray-tracing software to construct the accurate

radio map [13].
In summary, both data-driven and physical map based ap-

proaches for radio map construction have their respective draw-

backs. The former incurs significant construction cost for data

collection and the spatial interpolation based methods usually

neglect the abrupt change of environment, such as building

edges. The latter approaches rely on accurate 3D physical map,

which may not be always available.
Instead of taking the availability of physical map as granted,

the authors in [14] proposed a method to construct the physical

map, based on which the radio map is constructed with statisti-

cal channel model. To obtain the physical map, extensive radio

measurements are required to get the received signal strength

(RSS) values and the LoS/NLoS status at different locations

within the area. The authors in [11] proposed a probabilistic-



based framework that fuses radio measurement data and Lidar

depth measurement data to simultaneously construct physical

and radio maps. However, the incorporation of the radio and

sensing measurements based on the probabilistic framework

incurs large computational complexity, which is difficult to be

implemented in real-time.

To overcome the shortcomings of the aforementioned meth-

ods, in this paper, we propose a method to construct the radio

map and physical map simultaneously, by fusing the real-time

radio and sensing measurements data collected by the UAVs

in a single flight. The proposed method, termed Simultaneous

Radio and Physical Mapping (SRaPM), can be implemented

in an online manner, thus is quite appealing for improving

the communication performance and strengthening flight safety

of aerial users. Specifically, the RSS is measured while the

UAV receives information from the GBS, based on which a

hypothesis test problem is solved to determine whether the

LoS link is blocked. At the same time, the sensors equipped

on the UAV estimate the location of the reflection points,

based on which some knowledge on the height and location

of the buildings in different directions are deduced. Then, the

radio and sensing results are used to update the LSM, CGM

and BHM by exploiting their inherent relationships. Finally,

numerical results are provided to verify the effectiveness of

the proposed map construction method as compared with the

benchmarking spatial interpolation method.

II. SYSTEM MODEL

As shown in Fig. 1, we consider a cellular-connected UAV

communication system, for which the UAV is equipped with

both communication and sensing devices. Radio and physical

maps are concurrently constructed based on the measured RSS

and sensing results while the UAV flies along a given trajectory

to complete certain tasks, e.g., area surveillance.

UAV flight plane

Fig. 1: UAV communication and sensing model.

The region of interest is denoted by a 3D cubic G =
[0, lx] × [0, ly] × [0, lz]. We assume that the UAV flies in a

plane with a constant altitude, denoted by h, which is above

the highest building in the area of interest. The trajectory

of the UAV projected on the horizontal plane is denoted by

q(t) = (x(t), y(t)) ∈ R
1×2, 0 ≤ t ≤ T . As the UAV flies,

it maintains a communication link with the GBS, located at

qB = [xB , yB ] with height hB , and senses the environment

with onboard sensors, e.g., GPS, Radar, Lidar, etc. Based on

the radio and sensing measurements, it aims to construct the

following closely related radio and physical maps:

• Link State Map (LSM): LSM is represented by the func-

tion L(x, y), which returns the LoS/NLoS status of the

communication link between the GBS and the aerial user

located at (x, y, h) ∈ G. Mathematically, we have

L(x, y) =
{

1, if LoS exists at (x, y, h)

0, otherwise
(1)

• Channel Gain Map (CGM): CGM is represented by the

function G(x, y), which returns the channel gain for the

communication link between the GBS and the aerial user

located at (x, y, h) ∈ G.

• Building Height Map (BHM): BHM is represented by the

function H(x, y), which returns the building height at the

location (x, y) on the ground.

A. UAV Radio Measurements

For ease of exposition, the mission duration T is discretized

into N equally spaced time slot with duration δt, i.e., T = Nδt,
such that the change of the communication link between the

UAV and the GBS is negligible within each time slot. Thus,

the UAV trajectory q(t) can be approximated by the N -length

sequence {q[n], n = 1, ..., N}, where q[n] = q(nδt). Assume

that the GBS has a constant transmitting power. The channel

gain measured by the UAV at the nth time slot is determined

by the LoS status at the location q[n] and the distance d[n]
between the UAV and GBS, where

d[n] =
√
‖qn − qB‖2 + (h− hB)2. (2)

We adopt the αβ-path loss model, for which the channel gain

in dB measured by the UAV in the nth time slot is given by

g[n] = f(αo, βo, ηo,q[n])

= βo − 10αo log10(d[n]) + ηo, o ∈ {LoS,NLoS}, (3)

where αo and βo represents the path loss exponent and offset,

respectively; ηo is a random variable that captures the effect of

shadowing, distributed according to N (0, σ2
o).

Based on the measured channel gain in (3), the UAV may

update the CGM value for those locations along its flying

trajectory, i.e., G(q[n]) = go[n]. Furthermore, when the channel

parameters {αo, βo, σ
2
o} for o ∈ {LoS,NLoS} are known, the

UAV can determine the link status by solving the following

hypothesis test problem

P1 :

{
H0 : g[n] = f(αLoS, βLoS, ηLoS, d[n])

H1 : g[n] = f(αNLoS, βNLoS, ηNLoS, d[n]).
(4)

This is a classical detection problem that can be solved by

standard method [15]. Considering that the shadowing is mod-

elled by a zero mean random variable in both LoS and NLoS

scenarios, we solve (4) by simply comparing the measured

channel gain g[n] with the path loss βo − 10αo log10(d[n])
where o ∈ {LoS,NLoS}. If H0 is returned by P1, we set

L(q[n]) = 1, and set L(q[n]) = 0 otherwise. The result of the

hypothesis test gives the value L(q[n]) for the LSM.

Note that since the trajectory of UAV only covers a small

portion of the area of interest, the pure channel measurements

are typically insufficient to construct high-quality radio maps of



the whole area. Fortunately, by utilizing the spatial geometry

semantics and UAV sensing results, the above issues can be

addressed, as elaborated in Section III.

B. UAV Sensing Measurements

To sense the environment, the radar sensor equipped on the

UAV may transmit beams towards different directions with

azimuth angle ϕ ∈ (0, 2π] and zenith angle θ ∈ [0, θmax]. Since

the UAV RSS measurement is typically much more frequent

than the UAV sensing measurement, we assume that UAV can

obtain the environmental sensing measurement once every k
time slots, i.e., the sensing results is obtained at the (uk)th
time slot, for u = 1, 2, ..., �N

k �.

(a) UAV sensing model

Reflecting Point

Projection Point

(b) Reflection point calculation

Fig. 2: An illustration for UAV sensing measurements.

For m = uk, the sensing results are obtained with respect

to the UAV’s current location q[m] = (x[m], y[m]), as shown

in Fig. 2. Denote the distance of the reflection point along

the direction (ϕ, θ) by d̃m(ϕ, θ). Then, we can obtain the

coordinate of reflection point along the direction (ϕ, θ) as

(x̃m(ϕ, θ), ỹm(ϕ, θ), z̃m(ϕ, θ)), where

x̃m(ϕ, θ) = x[m] + d̃m(ϕ, θ) sin(θ) cos(ϕ)

ỹm(ϕ, θ) = y[m] + d̃m(ϕ, θ) sin(θ) sin(ϕ)

z̃m(ϕ, θ) = h− d̃m(ϕ, θ) cos(θ)

(5)

The existence of the reflection point at

(x̃m(ϕ, θ), ỹm(ϕ, θ), z̃m(ϕ, θ)) implies that the building

height at the location (x̃m(ϕ, θ), ỹm(ϕ, θ)) should be no

smaller than z̃m(ϕ, θ). This provides us the information for

updating the BHM, i.e.,

H(x̃m(ϕ, θ), ỹm(ϕ, θ)) ≥ z̃m(ϕ, θ). (6)

However, limited by the UAV trajectory, (6) can only provide

the building height information for a small portion of the area,

which is insufficient for the BHM construction. This issue can

be addressed by exploiting the spatial geometry semantics and

fusing both the radio and sensing data, as elaborated in the

following.

III. SIMULTANEOUS RADIO AND PHYSICAL MAPPING

In this section, we propose a framework for simultaneously

constructing the LSM, CGM and BHM by jointly utilizing

the UAV radio and sensing measurements data, together with

the inherent relationship among these maps, as illustrated in

Fig. 3. For instance, if the LoS link is not blocked, it implies

that all the buildings along the line segment connecting the

GBS and the UAV are of heights lower than the line. This

allows us to update the BHM based on LSM. On the other

hand, the BHM can be used to improve the accuracy of the

hypothesis test in (4) by providing a priori information of

the environment, and allow us to infer the link status for

those unvisited locations. Furthermore, if the link status of a

particular location is determined, we can estimate the channel

gain based on (3). This allows us to enhance the CGM based

on LSM.

UAV Radio 
Measurements

UAV Sensing 
Measurements

CGM LSM BHM

Fig. 3: The proposed framework for simultaneous radio and physical
mapping by fusing radio and sensing measurement data.

In the following, we will discuss the inherent relationship

among the maps in details and provide a general algorithm for

constructing them simultaneously by fusing the UAV radio and

sensing data collected as it flies along the trajectory {q[n]}.

A. Map Initialization

For convenience, the area of interested is divided into grids

with side length δd. The link status, channel gain and building

height for the points within each small grid are assumed to be

the same. Hence, constructing the LSM L(x, y), CGM G(x, y),
and BHM H(x, y) is equivalent to determine the value of

L(xi, yj), G(xi, yj) and H(xi, yj), with (xi, yj) be the center

of the (i, j)th grid, for all i, j. Before the UAV is dispatched,

it may initialize the maps as

L(xi, yj) = 1,G(xi, yj) = 0,H(xi, yj) = 0, ∀i, j. (7)

Note that for the LSM, an initial value of 1 means that the

UAV-GBS link is dominated by the LoS link in all locations.

This is consistent with the initialization of BHM.

B. Map Update Based on Radio Data

As discussed in Section II-A, the UAV can update the

CGM and LSM based on the radio measurements {g[n], n =
1, ..., N} and the hypothesis test in (4), respectively. Specif-

ically, if q[n] ∈ [
xi − δd

2 , xi +
δd
2

) × [
yj − δd

2 , yi +
δd
2

)
, we

can set

G(xi, yj) = G(q[n]) = g[n]. (8)

With the value of CGM, the value of LSM L(q[n]) can be

updated by solving the hypothesis testing problem of P1.

Besides, as shown in Fig. 4(a), we denote the location of the

GBS antenna as point O and its projection on the UAV flying

plane by point A. If the channel between the UAV and GBS is

identified to be LoS, the locations on the line connecting q[n]
and point A must also have LoS links, based on the spatial

geometry semantics. Similarly, if the channel between the UAV

and GBS is identified to be NLoS, then the locations on the

line beyond q[n] must also have NLoS links. However, note



that it requires the assumption that the building has no hollow

to ensure the rigorous. This is satisfied in most cases.

LoS LoS

(a) LoS at q[n]

NLoS NLoS

(b) NLoS at q[n]

Fig. 4: An illustration of the LSM and BHM enhancement with
radio data.

For any location B on the UAV flight plane, denote by

Ψ(A,B) ⊂ {(xi, yj), ∀i, j} the set of grids on the line segment

connecting point A and B. Further denote by Ψ̄(A,B,→) the

set of grids along the extension of the line AB towards the

direction of B, with line segment AB excluded. Then, the LSM

construction method discussed above can be summarized as

L(Ψ(A,q[n])) = 1, if L(q[n]) = 1, (9)

L(Ψ(A,q[n],→) = 0, if L(q[n]) = 0. (10)

Once the link status of a typical grid is determined, we

can estimate the channel gain based on its distance to the

GBS, by ignoring the shadowing effect which has zero mean.

Mathematically, we have

G(Ψ(A,q[n]))

= f̃(αLoS, βLoS,Ψ(A,q[n])), if L(q[n]) = 1, (11)

G(Ψ(A,q[n],→)

= f̃(αNLoS, βNLoS,Ψ(A,q[n],→), if L(q[n]) = 0, (12)

where the function f̃(α, β,q) = β − 10α log(d(qB ,q)) is the

channel gain without shadowing.

Furthermore, if the LoS link between the UAV and GBS

exists, as shown in Fig. 4(a), the building heights located in

Ψ(A,q[n]) must be lower than the line connecting point O
and the UAV at q[n]. Consider q′ = (x′

i, y
′
j) ∈ Ψ(A,q[n]) as

a typical grid that intersect with the line connecting point A
and q[n]. The building height at q′ is no greater than

h̃(q′) =
‖q′ − qB‖
‖q[n]− qB‖ (h− hB) + hB . (13)

This can be used to update the BHM obtained from the UAV

sensing results, as

H(q′) = min{H(q′), h̃(q′)}. (14)

C. Map Update Based on Sensing Data

As discussed in Section II-B, the sensing results can be used

to update the BHM. The sensing results are collected only at the

(uk)th time slot, for u = 1, 2, ..., �N
k �. For m = uk, consider

a typical reflection point, denoted by rm = (x̃m, ỹm, z̃m). If

x̃m ∈ [
xi − δd

2 , xi +
δd
2

)
and ỹm ∈ [

yj − δd
2 , xj +

δd
2

)
, we

can update the BHM as

H(xi, yj) = max{H(xi, yj), z̃m}. (15)

Furthermore, denote the projection of the reflection point on

the UAV flying plane by R, i.e., qr = (x̃m, ỹm, h). Then, for

the grids along the line segment connecting q[m] and R, i.e.,

q′ ∈ Ψ(q[m],qr), the building height is no greater than

h̃r(q
′) =

‖q′ − qr‖
‖q[m]− qr‖ (hB − z̃m) + z̃m. (16)

The relationship in (16) allows us to update the BHM as

H(q′) = min{H(q′), h̃r(q
′)}. (17)

The construction of BHM from the sensing results in (15)

can also be used to improve the accuracy of the LSM. As

illustrated in Fig. 5, connecting the GBS antenna at point O
with the reflection point rm gives us a region where the LoS

is blocked. Note that it also requires the assumption that the

building has no hollow to ensure the rigorous. Denote the

intersection of the line with the UAV flying plane by point C.

Further consider a point slightly below the reflection point, e.g.,

r′m = (x̃m, ỹm, z̃m−ε). The intersection of the line connecting

O and r′m with the UAV flying plane is denoted by point D.

Hence, we can conclude that the locations on the line segment

CD and the extension towards D must have NLoS link with

the GBS. Mathematically, we have

L(Ψ̄(C,D,→)) = 0. (18)

Note that (18) is not only applicable for determining the link

status of those grids that have not been visited, but also help to

correct the hypothesis test error for those grids that have been

visited by the UAV.

NLoS NLoS

Fig. 5: An illustration of the LSM enhancement with building height
information.

D. Proposed SRaPM Construction Algorithm

In Algorithm 1, we summarize the proposed online algorithm

for the UAV to simultaneously construct the LSM, CGM and

BHM, by fusing the radio and sensing measurements data

collected during its flight.

Due to the limitation of the UAV trajectory, updating the

LSM, CGM and BHM based on the radio and sensing measure-

ments may not cover the entire area of interest. Denote by ΥL,

ΥG and ΥB the set of grids whose link status, channel gain and

building height are not updated, respectively. For ∀(x, y) ∈ ΥL,

their initial value will be used, i.e. L(x, y) = 1. Similarly for

∀(x, y) ∈ ΥB , H(x, y) = 0. Futhermore, for ∀(x, y) ∈ ΥG, we

update the value G(x, y) according to L(x, y) and the channel

gain model as in (11).

IV. NUMERICAL RESULTS

In this section, numerical results are presented to verify

the performance of the proposed algorithm for simultaneous

radio and physical map construction. As shown in Fig. 6(a),



Algorithm 1 Simultaneous Radio and Physical Mapping

(SRaPM)

1: Initialize: LSM L(xi, yj) = 1, CGM G(xi, yj) = 0, BHM

H(xi, yj) = 0, ∀i, j .

2: for n = 1 : N do
3: The UAV collects the radio measurement data g[n] at

location q[n] and determine the link status L(q[n]) by

solving P1.

4: if L(q[n]) = 1 then
5: Update LSM and CGM according to (9) and (11).

6: Update BHM according to (14).

7: else
8: Update LSM and CGM according to (10) and (12).

9: end if
10: if n mod k = 0 then
11: The UAV obtains the sensing measurement data and

calculate the reflection points according to (5), at each

beam direction.

12: for Each determined reflection point do
13: Update BHM according to (15) and (17).

14: Update LSM according to (18).

15: end for
16: end if
17: end for
18: Output: L(xi, yj), G(xi, yj), H(xi, yj), ∀i, j

we consider an urban area of size 1km × 1km with high-

rise buildings, which corresponds to the most challenging

environment for coverage-aware UAV navigation, since the

LoS/NLoS links and the RSS may alter frequently as the UAV

flies. The GBS is located at qB = (500m, 500m) with height

25m and the UAV flight trajectory is a rectangle around the

GBS, labeled by the blue line in Fig. 6(a).

(a) Top view (b) 3D view

Fig. 6: 3D urban environment. The GBS location is labeled as the
blue star in the center of the area and the UAV trajectory is labeled

as the blue rectangle.

In order to accurately simulate the GBS-UAV channel gain

map and 3D building environment map in the given urban en-

vironment, we first generate the building locations and heights

based on one realization of the statistical model suggested

by International Telecommunication Union (ITU) [16], which

involves three parameters, namely, a: the ratio of land area

covered by buildings to the total land area; b: the mean number

of buildings per unit area; and γ: a variable determining the

building height distribution, which is modelled as Rayleigh

distribution with mean value σ > 0. We set a maximum

value hmax for the height of the building. Fig. 6 shows the

3D and 2D views of the building locations and heights with

a = 0.3, b = 144 buildings/km2, and γ = 50m. For the channel

model, we adopt the LoS and NLoS channel parameters as

suggested in the 3GPP TR 36.777 urban macrocellular GBS-

UAV path loss model [17]. The simulation setup is summarized

in Table I.

TABLE I: Main Simulation Parameters

Parameter & notations Value
The max building height hmax 90m
The total distance of the UAV flight trajectory L 2000m
UAV flight height h 100m
The side length of grids δd 1m
The path loss exponent αLoS in LoS 2.2
The path loss offset βLoS in LoS −44.02
The variance of shadowing effects ηLoS in LoS 6.25
The path loss exponent αNLoS in NLoS 3.2
The path loss offset βNLoS in NLoS −30.96
The variance of shadowing effects ηNLoS in NLoS 12.25
UAV communication measurement number N 2000
The max UAV sensing elevation angle θmax 90◦
The max UAV sensing distance-dmax 300m

To evaluate the performance of the proposed map con-

struction algorithm, we consider a benchmark scheme based

on the IDW-KNN spatial interpolation. Specifically, for those

unvisited grids, their link status are interpolated based on the

UAV radio measurements only, with the weights inversely pro-

portional to the distances between the measurement locations

and the interpolated grids. After obtaining the complete LSM,

the CGM of the unvisited grids can be estimated based on their

link status and (11) (12). Fig 7 compares the constructed maps

of the proposed method and the benchmark scheme with the

ground truth. The proposed SRaPM algorithm is implemented

with k = 5, i.e., the sensing results are collected every 5 time

slots. It is observed that the radio maps constructed with the

proposed method match very well with the ground truth. By

contrast, the benchmark scheme gives poor performance. This

implies that the environment information obtained by UAV

sensing is of paramount importance for enhancing radio map

quality.

Next, to evaluate the quality of the constructed radio and

physical map, we define the root mean square error (RMSE)

of the map as the root of the accumulated square error of all the

grid values, normalized by the number of grids. For instance,

consider typical region divided into I × J grids. The ground

truth CGM is denoted as Ggt(xi, yj), i = 1, ..., I; j = 1, ..., J .

The RMSE of the constructed map G(xi, yj) is given by

ξG =

√√√√ 1

IJ

I∑
i=1

J∑
j=1

(Ggt(xi, yj)− G(xi, yj))
2
. (19)

Similarly, we can define the RMSE for the constructed LSM

and BHM, denoted as ξL and ξB , respectively.

Fig. 8 compares the RMSE of the LSM and CGM, con-

structed based on the proposed SRaPM algorithm and the

benchmark scheme. As expected, the proposed algorithm

achieves much lower error than the benchmark scheme, thanks

to its joint utilization of both radio and sensing data. Fur-

thermore, as k decreases, the quality of the constructed map

improves since more environment information is obtained with



(a) True LSM (b) True CGM

(c) Proposed LSM (d) Proposed CGM

(e) IDW-KNN LSM (f) IDW-KNN CGM

Fig. 7: Comparison of the constructed LSM and CGM with our
proposed method and benchmarking spatial interpolation method.

more frequent sensing. Note that the performance of the

benchmark scheme does not change with k since it relies on

the radio measurements only.

51015202530
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0.1

0.12
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0.16

IDW-KNN
SRaPM

(a) LSM

51015202530
4.5

4.8

5.1

5.4

5.7

IDW-KNN
SRaPM

(b) CGM

Fig. 8: Comparison of the RMSE of the constructed maps.

V. CONCLUSION

In this paper, we proposed an online algorithm for the UAV

to simultaneously construct the BHM, LSM and CGM, by

fusing the radio and sensing data collected during its flight.

Although the visited locations are quite limited along the

UAV trajectory, the proposed algorithm is able to construct the

map for the whole area by exploiting the inherent relationship

between the physical map and the radio map. Furthermore, with

the proposed online algorithm, the constructed maps can be

enhanced if the additional communication and sensing results

are obtained in the new flight. In the future, we will adopt

more comprehensive channel models and investigate the 3D

radio map construction based on the UAV communication and

sensing measurements.
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